
TRACER: A Platform for Securing Legacy Code

Kostantinos Stroggylos1, Dimitris Mitropoulos1, Zacharias Tzermias2,
Panagiotis Papadopoulos2, Fotios Rafailidis3, Diomidis Spinellis1, Sotiris

Ioannidis2, and Panagiotis Katsaros3

1 Department of Management Science and Technology
Athens University of Economics and Business

{circular, dimitro, dds}@aueb.gr
2 Institute of Computer Science

Foundation for Research and Technology - Hellas
{tzermias, panpap, sotiris}@ics.forth.gr

3 Department of Informatics
Aristotle University of Thessaloniki

{katsaros@csd.auth.gr, frafaili@yahoo.gr}

Keywords: Static Analysis, Software Security, Trusted Applications, Legacy
software.

Abstract

A security vulnerability is a programming error that introduces a potentially
exploitable weakness into a computer system. Such a vulnerability can severely
affect an organization’s infrastructure and cause significant financial damage to
it. Hence, one of the basic pursuits in every new software release should be to
mitigate such defects.

A number of tools and techniques are available for performing vulnerability
detection in software written in various programming platforms. One of the most
common approaches to identify software vulnerabilities is static analysis [1]. This
kind of analysis is performed by automated tools either on the program’s source
or object code and without actually executing it. However, since the formats
in which static analysis tools store and present their results vary wildly, it is
typically difficult to utilize many of them in the scope of a project. By automating
the process of running a variety of vulnerability detectors and collecting their
results in an efficient manner during development, the task of tracking security
defects throughout the evolution history of software projects can be simplified.

In this paper we present tracer, a framework to support the development
of secure applications by constantly monitoring software projects for vulnera-
bilities. tracer simplifies the integration of existing tools that detect software
vulnerabilities and promotes their use during development and maintenance.

Instead of designing and implementing tracer from the ground up, we built
it on top of the open source Alitheia Core [2] platform, which is designed for fa-
cilitating large scale quantitative software engineering studies. While Alitheia
Core aims for efficient estimation of the quality of software projects, tracer



was designed with a focus on software security. To support the specific objec-
tives of tracer, a set of new components was added at each level of the Alitheia
Core architecture. These include a model for representing software vulnerabili-
ties, a mechanism for automatic vulnerability detection triggering, a rest api
for accessing the analysis results, and an archetype for plug-ins to integrate
new vulnerability detection tools in the platform. Like Alitheia Core, tracer
monitors multiple data sources associated with the development of a software
project, such as the source code repository and bug tracking system, and au-
tomatically analyzes each revision. Therefore it can be used to track security
defects throughout the evolution of a project.

In most cases, the detection of vulnerabilities on a software artifact involves
only two steps: invoking an external tool created for this purpose with spe-
cific arguments as required, and evaluating the results it generates. There is a
vast number of software vulnerability detection tools available, each one having
different operating requirements. Such a tool can be integrated in tracer by
creating a corresponding driver that implements these two steps and stores the
results using the data model provided by the platform. Thus we can leverage the
functionality provided by existing tools, without duplicating it.

Such an external tool driver is called a vulnerability detector plug-in, and it
uses the Alitheia Core infrastructure to handle automatic activation, as well as
storage and retrieval of results. Each vulnerability detector is associated with
the set of vulnerability types it can detect and the different types of software
artifacts or programming constructs that it can analyze. This allows the platform
to automatically trigger it when needing to check if a software project or artifact
is vulnerable to a specific type of attacks or a new artifact is submitted to the
system for evaluation.

To demonstrate the efficiency and usability of the platform, we have cre-
ated plug-ins to integrate two different tools for vulnerability detection, namely:
FindBugs [3], and Frama-c [4]. The former analyzes applications written in Java,
while the latter examines applications written in c. This highlights the fact that
our platform does not depend on the programming language used to develop the
project that is being analyzed, and that the simplicity of integrating third party
tools leads to high levels of expandability of the platform.

References

1. Chess, B., West, J.: Secure programming with static analysis. Addison-Wesley
Professional (2007)

2. Gousios, G., Spinellis, D.: Alitheia core: An extensible software quality monitoring
platform. In: Proceedings of the 31st International Conference on Software Engi-
neering. ICSE ’09, Washington, DC, USA, IEEE Computer Society (2009) 579–582

3. Hovemeyer, D., Pugh, W.: Finding bugs is easy. SIGPLAN Not. 39 (December
2004) 92–106

4. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-c: A software analysis perspective. In: Proceedings of the 10th International
Conference on Software Engineering and Formal Methods. SEFM’12, Berlin, Hei-
delberg, Springer-Verlag (2012) 233–247


