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Abstract. Given a Kripke structure M and CTL formula ϕ, where
M �|= ϕ, the problem of Model Repair is to obtain a new model M ′

such that M ′ |= ϕ. Moreover, the changes made to M to derive M ′

should be minimal with respect to all such M ′. As in model checking,
state explosion can make it virtually impossible to carry out model re-
pair on models with infinite or even large state spaces. In this paper, we
present a framework for model repair that uses abstraction refinement to
tackle state explosion. Our model-repair framework is based on Kripke
Structures, a 3-valued semantics for CTL, and Kripke Modal Transition
Systems (KMTSs), and features an abstract-model-repair algorithm for
KMTSs. Application to an Automatic Door Opener system is used to
illustrate the practical utility of abstract model repair.
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1 Introduction

Given a modelM and temporal-logic formula ϕ,model checking is the problem of
determining if M |= ϕ. When this is not the case, a model checker will typically
provide a counterexample in the form of an execution path along which φ is
violated. The user should then process the counterexample manually to correct
the model.

An extended version of the model-checking problem is that of model repair :
given a model M and temporal-logic formula ϕ, where M �|= ϕ, obtain a new
model M ′ such that M ′ |= φ. The problem of Model Repair was introduced for
the first time in the context of Kripke structures and the CTL temporal logic
in [4].

State explosion is a well known problem in automated formal methods, such
as model checking and model repair, which limits their applicability to systems
having large or even infinite state spaces. Different techniques have been devel-
oped to cope with this problem. In the case of model checking, abstraction is
used to create a smaller, more abstract version M̂ of the initial concrete model
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M , and model checking is performed on this smaller model. For this technique
to work as advertised, it should be the case that M̂ |= ϕ iff M |= ϕ.

Motivated by the success of abstraction-based model checking, we present in
this paper a new framework for Model Repair that uses abstraction refinement
to tackle state explosion. The resulting Abstract Model Repair (AMR) method-
ology makes it possible to repair models with large state spaces, and to speed-up
the repair process through the use of smaller abstract models. The major con-
tributions of our work are as follows:

– We provide an AMR framework that uses Kripke structures (KSs) for the
concrete model, Kripke Modal Transition Systems (KMTSs) for the abstract
model, and a 3-valued semantics for interpreting CTL over KMTSs. An
abstract KMTS model is refined whenever the 3-valued CTL model-checking
problem returns a value of undefined. Repair is initiated on the KMTS when
a value of false is returned.

– We strengthen the Model Repair problem by additionally taking into account
the following minimality criterion (refer to the definition of Model Repair
above): the changes made to M to derive M ′ should be minimal with respect
to allM ′ satisfying ϕ. To handle the minimality constraint, we define a metric
space over KSs that quantifies the structural differences between KSs.

– A key feature of our Abstract Model Repair framework is a repair algorithm
for KMTSs, which takes into account the minimality criterion.

– We illustrate the utility of our approach by applying it to the repair of an
Automatic Door Opener system [1].

The rest of this paper is organized as follows. Sections 2 and 3 introduce KS,
KMTSs, and the concepts of abstraction and refinement for a 3-valued semantics
for CTL. Section 4 defines a metric space for KSs and gives the problem state-
ment for Model Repair. Section 5 presents our framework for Abstract Model
Repair, while Section 6 highlights our model-repair algorithm for KMTSs. Sec-
tion 7 considers related work, while Section 8 offers our concluding remarks.

2 Kripke Modal Transition Systems

Let AP be a set of atomic propositions. Also, the set Lit of literals is given by:

Lit = AP ∪ {¬p : p ∈ AP}

Definition 1. A Kripke Structure (KS) is a quadruple M=(S, S0, R, L), where:

1. S is a finite set of states.
2. S0 ⊆ S is the set of initial states.
3. R ⊆ S × S is a transition relation that must be total; i.e., ∀s ∈ S, ∃s′ ∈ S

such that R(s, s′).
4. L : S → 2Lit is a state labeling function such that ∀s ∈ S, ∀p ∈ AP ,

p ∈ L(s) ⇔ ¬p /∈ L(s).
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Fig. 1. The Automatic Door Opener (ADO) System

The fourth condition in Def. 1 ensures that an atomic proposition p ∈ AP has
one and only one truth value at any state.

Example. We use the Automatic Door Opener system (ADO) of [1] as a running
example throughout the paper. The system, given as a KS in Fig 1, requires
a three-digit code (p0, p1, p2) to open a door, allowing for a wrong digit to be
entered at most twice. Variable err counts the number of errors, and an alarm
is rung if its value exceeds two. For the purposes of our paper, we use a simpler
version of the ADO system, given as the KS M in Fig. 2a, where the set of
atomic propositions AP = {q}, q ≡ (open = true).

Definition 2. A Kripke Modal Transition System (KMTS) is a 5-tuple M̂ =
(Ŝ, Ŝ0, Rmust, Rmay, L̂), where:

1. Ŝ is a finite set of states.
2. Ŝ0 ⊆ Ŝ is the set of initial states.
3. Rmust ⊆ Ŝ× Ŝ and Rmay ⊆ Ŝ× Ŝ are transition relations such that Rmust ⊆

Rmay.

4. L̂ : Ŝ → 2Lit is a state-labeling such that ∀ŝ ∈ Ŝ, ∀p ∈ AP , ŝ is labeled by at
most one of p and ¬p.

A KMTS has two types of transitions: must-transitions, which exhibit necessary
behavior, and may-transitions, which exhibit possible behavior. The “at most
one” condition in the fourth part of Def. 2 makes it possible for the truth value
of an atomic proposition at a given state to be unknown. This relaxation of
truth values in conjunction with the existence of may-transitions in a KMTS
constitutes a partial modeling formalism.

Verifying a CTL formula φ over a KMTS may result in an undefined answer
(⊥). We use the 3-valued semantics [13] of a CTL formula φ at a state ŝ of
KMTS M̂ (denoted [(M̂, ŝ) |=3 φ]). From the 3-valued semantics, it follows that
must-transitions (under-approximation) are used to check the truth of existential
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CTL properties, while may-transitions (over-approximation) are used to check
the truth of universal CTL properties. This works inversely for checking the
refutation of CTL properties. When we get ⊥ from the 3-valued model checking
of a CTL formula φ on a KMTS, the result of model checking property φ on the
corresponding KS can be either true or false. In the rest of the paper, we use |=
instead of |=3 in order to refer to 3-valued satisfaction relation.

3 Abstraction and Refinement for 3-Valued CTL

3.1 Abstraction

Abstraction is a state-space reduction technique that produces a smaller abstract
model from an initial concrete model, so that the models behave similarly. In
order for the result of verifying an abstract model to hold for its concrete model,
the abstract model should be produced with certain requirements [7,10].

Definition 3. Let M = (S, S0, R, L) be a KS. For any pair of total functions
� = (α : S → Ŝ, γ : Ŝ → 2S), where ∀s ∈ S, ŝ ∈ Ŝ, α(s) = ŝ if and only if
s ∈ γ(ŝ), a KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂) is defined as follows:

1. ŝ ∈ Ŝ0 iff ∃s ∈ γ(ŝ) such that s ∈ S0

2. lit ∈ L̂(ŝ) only if ∀s ∈ γ(ŝ) it holds that lit ∈ L(s)
3. Rmust = {(ŝ1, ŝ2) | ∀s1 ∈ γ(ŝ1) ∃s2 ∈ γ(ŝ2) such that R(s1, s2)}
4. Rmay = {(ŝ1, ŝ2) | ∃s1 ∈ γ(ŝ1) ∃s2 ∈ γ(ŝ2) such that R(s1, s2)}
For a given KS and pair of abstraction and concretization functions, Def. 3
introduces a KMTS with a set Ŝ of abstract states. In our AMR framework, we
view the given KS as the concrete model and the derived KMTS as the abstract
model. A state of the abstract KMTS is initial if and only if at least one of its
concrete states is initial. An atomic proposition is true (or false) in an abstract
state, only if this atomic proposition is true (or false) in all of its concrete states.
Only if allows for the value of an atomic proposition to be unknown at a KMTS
state. Between two abstract states ŝ1,ŝ2, there exists a must-transition if there
are transitions from all the concrete states of ŝ1 to at least one concrete state
of ŝ2 (∀∃ − condition), while on the other side, there exists a may-transition if
there is a transition from at least one concrete state of ŝ1 to at least one concrete
state of ŝ2 (∃∃ − condition).

Definition 4. [8,11] Let M = (S, S0, R, L) be a concrete KS, and let M̂ =
(Ŝ, Ŝ0, Rmust, Rmay, L̂) be an abstract KMTS. A relation H ⊆ S × Ŝ for M and

M̂ is called a mixed simulation, when H(s, ŝ) implies:

– L̂(ŝ) ⊆ L(s)
– if r = (s, s′) ∈ R, then there exists some ŝ′ ∈ Ŝ such that rmay = (ŝ, ŝ′) ∈

Rmay and (s′, ŝ′) ∈ H.

– if rmust = (ŝ, ŝ′) ∈ Rmust, then there exists some s′ ∈ S such that r =
(s, s′) ∈ R and (s′, ŝ′) ∈ H.

Abstraction function α in Def. 3 is a mixed simulation for KS M and KMTS M̂ .
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(a) The KS and initial KMTS (b) The KS and refined KMTS

Fig. 2. The KS and KMTSs for the ADO system

Theorem 1. [11] Let H ⊆ S × Ŝ be a mixed simulation from a KS M =
(S, S0, R, L) to a KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂). Then, for every CTL
formula ϕ and every (s, ŝ) ∈ H it holds that

[(M̂, ŝ) |= ϕ] �= ⊥ ⇒ [(M, s) |= ϕ] = [(M̂, ŝ) |= φ]

Theorem 1 ensures that if a CTL formula φ has a definite truth value (true or
false) in the abstract KMTS then it has the same truth value in the concrete
KS.

Example. An abstract KMTS M̂ is presented in Fig. 2a, where all the states
labeled by q are grouped together, as are all states labeled by ¬q.

3.2 Refinement

When the answer to verifying a CTL formula ϕ on an abstract model using the
3-valued semantics is ⊥, then a refinement step is needed to acquire a more
precise abstract model. A number of refinement frameworks specialized for 3-
valued model checking have been proposed [10,16]. The refinement technique
that we use in our framework is a two-step process: (1) identify a failure state in
the KMTS, and (2) produce a new abstract KMTS such that this failure state is
refined into several states. The cause of failure for a state s stems from an atomic
proposition having an undefined value in s, or from an outgoing may-transition
from s. In both cases, s is refined in a way that the cause of failure is eliminated.

Example. Consider the case where the ADO system requires a mechanism for
opening the door from any state with a direct action. This could be an action
done by an expert if an immediate opening of a door is required. This property
can be expressed in CTL as the formula ϕ = AGEXq. Observe that in M̂ of
Fig. 2a, the absence of a must-transition from ŝ0 to ŝ1, where [(M̂, ŝ1) |= q] =
true, in conjunction with the existence of a may-transition from ŝ0 to ŝ1, thus
to a state where [(M̂, ŝ1) |= q] = true, results in an undefined answer to the
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model-checking question for M̂ and ϕ. State ŝ0 is identified as the failure state,
and the may-transition from ŝ0 to ŝ1 as the cause of the failure. Consequently,
ŝ0 is refined into two states, ŝ01 and ŝ02, such that the former has no transition
to ŝ1 and the latter has an outgoing must-transition to ŝ1. As such, we eliminate
the may-transition which led to the undefined answer of model checking varφ
over M̂ . The refined KMTS M̂Refined together with the initial KS is shown in
Fig. 2b.

4 The Model Repair Problem

In this section, we give the problem statement for Model Repair and define a
metric space over Kripke structures to quantify their structural differences such
that the minimality of changes can be taken into account as a criterion for Model
Repair.

Let G be a function on the set of all functions F : X → Y such that:

G(F : X → Y ) = {(x, F (x)) : x ∈ X}
Let F : X → Y be a function defined over a set X . A restricting operator (�) for
the domain of function F can be defined such that

F �X1= {(x, F (x)) : x ∈ X1}
where X1 ⊆ X . Finally, we let SC denote the complement of a set S.

Definition 5. Let KM be the set of all KSs M ′ = (S′, S′
0, R

′, L′) derived from
the KS M = (S, S0, R, L), where S′ = (S ∪ SIN ) − SOUT for some SIN ⊆ SC,
SOUT ⊆ S, R′ = (R ∪ RIN ) − ROUT for some RIN ⊆ RC, ROUT ⊆ R, L′ =
S′ → 2LIT . A distance function d can be defined over KM such that

d(M,M ′) = |SΔS′|+ |RΔR′|+ |G(L �S∩S′)ΔG(L′ �S∩S′)|
2

where AΔB represents the symmetric difference (A−B) ∪ (B −A).

For any two KSs defined over the same set of atomic propositions AP , function
d counts the number of differences |SΔS′| in the state space of M , the number of
differences |RΔR′| in their transition relation and the number of common states
with altered labeling.

Proposition 1. The ordered pair (KM , d) is a metric space.

Definition 6. Given a KS M and a CTL formula ϕ where M �|= ϕ, the Model
Repair problem is to find a KS M ′, such that M ′ |= ϕ and d(M,M ′) is minimal
with respect to all such M ′.

The Model Repair problem aims at modifying a KS such that the KS satisfies
a CTL formula that it originally does not. We focus on repair with minimal
changes to the original KS.
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Fig. 3. Abstract Model Repair Framework

5 Abstract Model Repair Framework and Algorithm

Our AMR framework integrates 3-valued model checking, model refinement, and
a new algorithm for ordering the basic repair operations to be performed on the
abstract model. The goal of this algorithm is to order the repair operations in
such a way that the number of corresponding structural changes applied to the
concrete model is minimized. The basis for this algorithm is a partial order over
the basic repair operations. This section describes the steps involved in our AMR
framework, the basic repair operations, and the operations-ordering algorithm.

5.1 The Abstract Model Repair Process

The process steps shown in Fig. 3 rely on the KMTS abstraction of Def. 3. These
are the following:

Step 1. Given a KS M , a state s of M , and a CTL property ϕ, let us call M̂
the KMTS obtained as in Def. 3.

Step 2. For state ŝ = α(s) of M̂ , we check whether (M̂, ŝ) |= ϕ by 3-valued
model checking.
Case 1. If the result is true, then, according to Theorem 1, (M, s) |= ϕ and

there is no need for repair.
Case 2. If the result is undefined, M̂ is refined to an M̂Refined and control

is transferred to Step 2.
Case 3. If the result is false, then, from Theorem 1, (M, s) �|= ϕ and the

repair process follows.
Step 3. The AbstractRepair algorithm is called for the KMTS M̂ (or M̂Refined

if refinement occurred), the state ŝ and the property ϕ.
Case 1. AbstractRepair returns an M̂ ′ for which (M̂ ′, ŝ) |= ϕ.
Case 2. AbstractRepair fails to find an M̂ ′ for which the property holds.
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Step 4. If AbstractRepair returns an M̂ ′, then the process ends with a set of
KSs, resulting from the concretization of M̂ ′, whose structural distance d
from the original KS M is minimized.

5.2 Basic Repair Operations

We decompose the repair process of the KMTS into seven basic repair operations:

AddMust. Adding a must-transition
AddMay. Adding a may-transition
RemoveMust. Removing an existing must-transition
RemoveMay. Removing an existing may-transition
ChangeLabel. Changing the labeling of a KMTS state
AddState. Adding a new KMTS state
RemoveState. Removing a disconnected KMTS state

Definition 7 (AddMust). For a given KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂)

and r̂n = (ŝ1, ŝ2) /∈ Rmust with ŝ1, ŝ2 ∈ Ŝ, AddMust(M̂, r̂n) is a KMTS M̂ ′ =
(Ŝ′, Ŝ′

0, R
′
must, R

′
may, L̂

′) such that Ŝ′ = Ŝ, Ŝ′
0 = Ŝ0, R′

must = Rmust ∪ {r̂n},
R′

may = Rmay ∪ {r̂n} and L̂′ = L̂.

Fig. 4 shows how the basic repair operation AddMust modifies a given KMTS.

(a) May-transition exists (b) May-transition doesn’t exist

Fig. 4. AddMust : Adding a new must-transition

Definition 8. Let M be a KS, M̂ be a KMTS derived as in Def. 3, and M̂ ′ =
AddMust(M̂, r̂n) for some r̂n = (ŝ1, ŝ2) /∈ Rmust with ŝ1, ŝ2 ∈ Ŝ. The set of
KSs, derived from the concretization of M̂ ′, whose structural distance d from M
is minimized is given by:

Kmin = {M ′ = (S′, S′
0, R

′, L′) | S′ = S, S′
0 = S0, R

′ = R ∪Rn, L
′ = L} (1)

where
Rn = {rn = (s1, s2) | for every s1 ∈ γ(ŝ1) such that � ∃s ∈ γ(ŝ2) with (s1, s) ∈ R,
and only one s2 ∈ γ(ŝ2)}.
Def. 8 implies that when the AbstractRepair algorithm applies AddMust on the
abstract KMTS M̂ , then a set of KSs are retrieved from the concretization of M̂ ′.



Abstract Model Repair 349

The same holds for the other basic repair operations for which their definition
is omitted for the sake of brevity. Consequently when AbstractRepair finds a
repaired KMTS, one or more KSs can be obtained for which property ϕ holds.

Proposition 2. For all M ′ ∈ Kmin, it holds that 1 ≤ d(M,M ′) ≤ |S|.
From Prop. 2, we conclude that a lower and upper bound exists for the distance
between M and any M ′ ∈ Kmin.

Minimality of Changes Ordering for Basic Repair Operations. Based
on the upper bound given by Prop. 2 and the corresponding results for the
other basic repair operations, we introduce the ordering shown in Fig. 5. We use
this ordering in the AbstractRepair algorithm to heuristically select at each step
the basic repair operation that generates the KSs with the least changes. The
alternative to check at each step all possible repaired KSs in order to identify
the proper basic repair operation, would cancel the benefits of using abstraction.
The reason is that such a check inevitably depends on the size of the KS.

Remove
State

Change
Label

Remove
May

d ≤ |S|2

Add
Must

Remove
Must

d ≤ |S| d ≤ |S| d ≤ |S|

Add
State 
d ≤ 1

d ≤ |S|

Add
May
d ≤ 1

Fig. 5. Minimality of changes ordering of the set of basic operations

6 The Abstract Model Repair Algorithm

The AbstractRepair algorithm used in Step 3 of our repair process is a recursive,
CTL syntax-directed algorithm. The repair of an abstract KMTS is accomplished
by successive calls of primitive repair functions that handle atomic formulas,
logical connectives and CTL operators.

The main routine of AbstractRepair is presented in Algorithm 1. A set of
constraints C = {(ŝc1, φc1), (ŝc2, φc2), ..., (ŝcn, φcn)} which is initially empty is
passed as an argument in the successive recursive calls of AbstractRepair. If C is
not empty, then for the KMTS M̂ ′ returned from AbstractRepair, it holds that
(M̂ ′, ŝci) |= φci for all (ŝci, φci) ∈ C. C is used for handling conjunctive formulas
of the form φ = φ1 ∧ φ2 for some state ŝ. In this case, AbstractRepair is called
for the KMTS M̂ and property φ1 with C = {(ŝ, φ2)}. The same is repeated for
property φ2 with C = {(ŝ, φ1)} and the two results are combined appropriately.

For any CTL formula φ and KMTS state ŝ, AbstractRepair either outputs a
KMTS M̂ ′ for which (M̂ ′, ŝ) |= φ or else returns FAILURE if such a model cannot
be found. This is the case when the algorithm handles conjunctive formulas and
a KMTS that simultaneously satisfies all conjuncts cannot be found.
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Algorithm 1. AbstractRepair

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay , L̂), ŝ ∈ Ŝ, a CTL property φ for which (M̂, ŝ) �|= φ,
and a set of constraints C = {(ŝc1, φc1), (ŝc2, φc2), ..., (ŝcn, φcn)} where ŝci ∈ Ŝ and
φci is a CTL formula.

Output: M̂ ′ = (Ŝ′, Ŝ′
0, R

′
must, R

′
may , L̂′) and (M̂ ′, ŝ) |= φ or FAILURE.

1: φpos := PositiveNormalForm(φ)
2: if φpos is ⊥ then
3: return FAILURE
4: else if φpos ∈ LIT then
5: return AbstractRepairATOMIC(M̂, ŝ, φpos, C)
6: else if φpos is φ1 ∧ φ2 then
7: return AbstractRepairAND(M̂, ŝ, φpos, C)
8: else if φpos is φ1 ∨ φ2 then
9: return AbstractRepairOR(M̂, ŝ, φpos, C)
10: else if φpos is OPERφ1 then
11: return AbstractRepairOPER(M̂, ŝ, φpos, C)
12: where OPER ∈ {AX,EX,AU,EU,AF,EF,AG,EG}

6.1 Primitive Functions

For a simple atomic formula, AbstractRepairATOMIC updates the label of the
input state with the given atomic proposition. While conjunctive formulas are
handled by the algorithm with the use of constraints, disjunctive formulas are
handled by repairing any of the disjuncts.

Algorithm 2 describes the primitive function AbstractRepairAG which is called
when φ = AGφ1. When AbstractRepairAG is called with state ŝ as argument, it
recursively calls AbstractRepair for all states that are reachable from ŝ through
successive may-transitions and do not satisfy φ1. If the found KMTS M̂ ′ does
not violate any constraint in C, then (M̂ ′, ŝ) |= φ and AbstractRepairAG re-
turns the found solution. If a KMTS does not satisfy all the constraints in C,
then AbstractRepairAG tries to repair the input KMTS by removing all may-
transitions through which the state violating φ1 is reached.

AbstractRepairEX presented in Algorithm 3 is the primitive function for han-
dling properties of the form EXφ1 for some state ŝ. Initially, this function tries
to repair the KMTS by adding a must-transition from ŝ to a state that satisfies
property φ1. If the obtained KMTS does not satisfy all constraints in C, then
AbstractRepair is recursively called for an immediate successor of ŝ through a
must-transition, such that φ1 is not satisfied. If a constraint in C is still violated,
then (i) a new state is added, (ii) AbstractRepair is called for the new state and
(iii) a must-transition from ŝ to the new state is added.

6.2 Well-definedness and Soundness

AbstractRepair is well-defined, in the sense that all possible cases are handled
and each algorithm step is deterministically defined. This feature distinguishes
our approach from related concrete model repair solutions which entail nonde-
terministic behavior [19,5].
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Algorithm 2. AbstractRepairAG

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay , L̂), ŝ ∈ Ŝ, a CTL property φ = AGφ1 for which
(M̂ , ŝ) �|= φ, and a set of constraints C = {(ŝc1, φc1), (ŝc2, φc2), ..., (ŝcn, φcn)} where
ŝci ∈ Ŝ and φci is a CTL formula.

Output: M̂ ′ = (Ŝ′, Ŝ′
0, R

′
must, R

′
may , L̂′) and (M̂ ′, ŝ) |= φ or FAILURE.

1: if (M̂, ŝ) �|= φ1 then
2: RET := AbstractRepair(M̂, ŝ, φ1, C)
3: if RET == FAILURE then
4: return FAILURE
5: else
6: M̂ ′ := RET
7: else
8: M̂ ′ := M̂
9: M̂ ′′ := M̂ ′

10: for all reachable states ŝk through may-transitions from ŝ such that (M̂ ′, ŝk) �|= φ1

do
11: RET := AbstractRepair(M̂ ′, ŝk, φ1, C)
12: if RET == FAILURE then
13: BREAK
14: else
15: M̂ ′ := RET
16: if M̂ ′ |= φ && M̂ ′ |= C then
17: return M̂ ′

18: else
19: M̂ ′ := M̂ ′′

20: for all π̂may := [ŝ, ŝ1, ..., ŝi, ŝk] for which (M̂ ′, ŝk) �|= φ1, (M̂ ′, ŝi) |= φ1 and
� ∃ŝj ∈ π̂may such that (M̂ ′, ŝj) �|= φ1 and ŝj ∈ Premay(ŝi) do

21: r̂m := (ŝi, ŝk), M̂ ′ := RemoveMay(M̂ ′, r̂m)
22: if ŝi is a dead-end state then
23: r̂n := (ŝi, ŝi), M̂ ′ := AddMay(M̂ ′, r̂n)
24: if M̂ ′ |= C then
25: return M̂ ′

26: else
27: return FAILURE

Theorem 2 (Soundness). Let M̂ be a KMTS and φ a CTL formula for which
(M̂, ŝ) �|= φ for some state ŝ of M̂ . If AbstractRepair(M̂, ŝ, φ) returns a KMTS
M̂ ′, then (M̂ ′, ŝ) |= φ.

Proof. The proof is done by structural induction over φ.

Theorem 2 shows that AbstractRepair is sound in the sense that if it returns a
KMTS M̂ ′, then M̂ ′ satisfies property φ. In that case, from Def. 8 it follows that
one or more KSs are obtained for which property φ holds true.

6.3 Application

We present the application of AbstractRepair to the ADO system from Section 2.
After the first two steps of our repair process, AbstractRepair is called for the
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Algorithm 3. AbstractRepairEX

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay , L̂), ŝ ∈ Ŝ, a CTL property φ = EXφ1 for which
(M̂ , ŝ) �|= φ, and a set of constraints C = {(ŝc1, φc1), (ŝc2, φc2), ..., (ŝcn, φcn)} where
ŝci ∈ M̂ and φci is a CTL formula.

Output: M̂ ′ = (Ŝ′, Ŝ′
0, R

′
must, R

′
may , L̂′) and (M̂ ′, ŝ) |= φ or FAILURE.

1: if there exists ŝ1 ∈ Ŝ such that (M̂, ŝ1) |= φ1 then
2: for all ŝi ∈ Ŝ such that (M̂, ŝi) |= φ1 do
3: r̂n := (ŝ, ŝi), M̂ ′ := AddMust(M̂, r̂n)
4: if M̂ ′ |= C then
5: return M̂ ′

6: else
7: for all ŝi ∈ Postmust(ŝ) do
8: RET := AbstractRepair(M̂, ŝi, φ1, C)
9: if RET �= FAILURE then
10: M̂ ′ := RET
11: return M̂ ′

12: M̂ ′ := AddState(M̂, ŝ′1), r̂n := (ŝ, ŝ′1), M̂ ′ := AddMust(M̂ ′, r̂n)
13: if ŝ′1 is a dead-end state then
14: r̂n := (ŝ′1, ŝ

′
1), M̂ ′ := AddMay(M̂ ′, r̂n)

15: RET := AbstractRepair(M̂ ′, ŝ′1, φ1, C)
16: if RET �= FAILURE then
17: M̂ ′ := RET
18: return M̂ ′

19: else
20: return FAILURE
21: return FAILURE

(a) Application of AbstractRepair (b) The repaired KMTS and KS

Fig. 6. Repair of ADO system using abstraction

KMTS M̂Refined that is shown in Fig. 2b, the state ŝ01 and the CTL property
φ = AGEXq.

AbstractRepair calls AbstractRepairAG with arguments M̂Refined, ŝ01 and
AGEXq. The AbstractRepairAG algorithm at line 2 triggers a recursive call
of AbstractRepair with the same arguments. Eventually, AbstractRepairEX is
called with arguments M̂Refined, ŝ01 and EXq, that in turn calls AddMust at
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line 3, thus adding a must-transition from ŝ01 to ŝ1. AbstractRepair terminates
by returning a KMTS M̂ ′ that satisfies φ = AGEXq. The repaired KS M ′ is
the single element in the set of KSs derived by the concretization of M̂ ′. The
execution steps of AbstractRepair and the obtained repaired KMTS and KS are
shown in Fig. 6a and Fig. 6b respectively.

Although the ADO is not a system with a large state space, it is shown that
the repair process is accelerated by the proposed use of abstraction. If on the
other hand model repair was applied directly to the concrete model, adding
transitions to the state labeled with open would have to take place for all states
with a different labeling. The number of these states is seven but in a system
with a large state space this number can be significantly higher. Direct repair of
such a model without using abstraction is impractical.

7 Related Work

To the best of our knowledge this is the first work that suggests the use of
abstraction as a means to counter the state space explosion in the search for a
solution to the Model Repair problem. In [18], abstract interpretation is used in
program synthesis, a problem related to Model Repair but much different.

A first attempt for introducing the Model Repair problem in the context of
CTL has been done in [4], where a repair algorithm with high computational
cost is presented based on the AI techniques of abductive reasoning and theory
revision. A formal algorithm for Model Repair in the context of KSs and CTL
is presented in [19]. The authors acknowledge that the repair process strongly
depends on the size of the model, while they do not implement explicitly in
their algorithm how the constraints can be used to handle conjunctive formulas.
An effort for making repair applicable to large KSs, is done by the authors of
[6]. They use “table systems”, a concise representation of KSs, implemented in
the NuSMV model checker. A certain limitation for their approach is that ta-
ble systems cannot represent any KS. In [20], tree-like local model updates are
introduced with the aim of making repair process applicable to large scale do-
mains, but their approach is limited to the universal fragment of CTL formulas.
For better handling of the constraints in the repair process and thus, ensuring
completeness of it, the use of constraint automata for ACTL formulas [14] and
the use of protected models for an extension of CTL [5] have been proposed.
Both methods are not directly applied to formulas of full CTL. An extension
of the Model Repair problem in the context of Labeled Transition Systems has
been examined in [9].

The Model Repair problem has been addressed in [2] in the context of prob-
abilistic systems. A slightly different problem, that of Model Revision, has been
studied for UNITY properties in [3] and for CTL in [12]. Finally, the program re-
pair problem that does not consider KSs as the repair model, has been examined
in prior work [17,15].
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8 Conclusions

In this paper, we have shown how abstraction can be used to fight state explosion
in Model Repair. Our model-repair framework is based on Kripke Structures, a 3-
valued semantics for CTL, and Kripke Modal Transition Systems, and features
an abstract-model-repair algorithm for KMTSs. To demonstrate its practical
utility, we applied our framework to an Automatic Door Opener system.

As future work, we plan to apply our method to case studies with larger
state spaces, and investigate how abstract model repair can be used in different
contexts and domains.
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