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Abstract—Security bugs are critical programming errors that
can lead to serious vulnerabilities in software. Examining their
behaviour and characteristics within a software ecosystem can
provide the research community with data regarding their
evolution, persistence and others. We present a dataset that
we produced by applying static analysis to the Maven Central
Repository (approximately 265GB of data) in order to detect
potential security bugs. For our analysis we used FindBugs, a tool
that examines Java bytecode to detect numerous types of bugs.
The dataset contains the metrics’ results that FindBugs reports
for every project version (a JAR) included in the ecosystem.
For every version in our data repository, we also store specific
metadata, such as the JAR’s size, its dependencies and others.
Our dataset can be used to produce interesting research results
involving security bugs, as we show in specific examples.

Index Terms—Security Bugs, Software Security, Static Analy-
sis, FindBugs, Software Ecosystem, Maven Repository, Software
Evolution.

I. INTRODUCTION

A security bug is a programming error that introduces a
potentially exploitable weakness into a computer system [1].
Compared to other bug categories, failures due to security
bugs have two distinct features: they can severely affect an
organization’s infrastructure [2], and they can cause significant
financial damage to an organization [3], [4]. Specifically,
whereas a software bug can cause a software artifact to fail, a
security bug can allow a malicious user to alter the execution
of the entire application for his or her own gain. Such bugs
could give rise to a wide range of security and privacy
issues, like the access of sensitive information, the destruction
or modification of data, and denial of service. Moreover,
security bug disclosures lead to a negative and significant
change in market value for a software vendor [5]. One of the
most common approaches to identify security bugs is static
analysis [6]. This kind of analysis involves the inspection of
the program’s source or object code without executing it.

A software ecosystem can be seen as a collection of
software projects, which are developed and co-evolved in the

TABLE I
BUG CATEGORIZATION ACCORDING TO FINDBUGS.

Description
Violations of recommended and essen-
tial coding practice.

Category
Bad Practice

Correctness Involves coding misting a way that is
particularly different from the other bug
sakes resulting in code that was proba-
bly not what the developer intended.

Experimental Includes unsatisfied obligations. For in-

stance, forgetting to close a file.
Indicates the use of non-localized meth-
ods.

Thread synchronization issues.

Internationalization (i18n)

Multi-Threaded (MT) Correctness

Performance Involves inefficient memory usage allo-
cation, usage of non-static classes.
Style Code that is confusing, or written in a

way that leads to errors.

Involves variables or fields exposed to
classes that should not be using them.
Involves input validation issues, unau-
thorized database connections and oth-
ers.

Malicious Code

Security

same environment [7]. Components can be interdependent and
have multiple versions. Examples of such ecosystems include
Python’s PyPI' (Python Package Index), Perl’s CPAN? (Com-
prehensive Perl Archive Network), Ruby’s RubyGems® and the
Maven Central Repository.* Maven is a build automation tool
used primarily for Java projects hosted by the Apache Software
Foundation. It uses XML to describe the software project being
built, its dependencies on other external modules, the build
order, and required plug-ins. To build a software component,
it dynamically downloads Java libraries and Maven plug-ins
from the Maven Central Repository, and stores them in a local
cache. The repository can be updated with new projects and
also with new versions of existing projects that can depend on

Uhttps://pypi.python.org/pypi
Zhttp://www.cpan.org/
3http://rubygems.org/
“http://mvnrepository.com/



TABLE II
DESCRIPTIVE STATISTICS MEASUREMENTS FOR THE MAVEN REPOSITORY.

Measurement Value
Projects 17,505
Versions (total) 115,214
Min (versions per project) 1
Max (versions per project) 338
Mean (versions per project) 6.58
Median (versions per project) 3
Range (over versions) 337
15t Quartile (over versions) 1
374 Quartile (over versions) 8

other versions.’

To analyze the Maven repository we used FindBugs,® a
static analysis tool that was also used for research purposes
in [8] and [9]. FindBugs’ role is to examine Java bytecode to
detect software bugs and separate them into nine categories.
Two of them involve security issues (see Table I). In this paper
we present: a) the construction process to obtain the collection
of the metrics results that the FindBugs tool produces for
every project version of the repository (115,214 JARs), b) our
dataset and c) how researchers can use the dataset and produce
meaningful results concerning security bugs.

II. CONSTRUCTION PROCESS

Initially, we obtained a snapshot of the Maven repository
and handled it locally to retrieve a list of all the names
of the project versions that existed in it. Then, we filtered
out projects written in programming languages other than
Java because FindBugs analyzes only Java bytecode. The
statistic measurements concerning the repository can be seen
in Table II.

Due to the large volume of our dataset, we designed our data
processing step in a distributed way. A schematic representa-
tion of our data processing architecture can be seen in Figure 1.
In particular, we created a series of processing tasks based on
the JAR list we have obtained and added them to a task queue
mechanism (a RabbitMQ’ message broker). Then, we executed
twenty five workers (custom Python scripts) that checked out
tasks from the queue, processed each project version and
stored the results to the data repository (a MongoDB® database
system).

A typical processing cycle of a worker included the follow-
ing steps: as soon as the worker was spawned, it requested
a task from the queue. This task contained the JAR name,
which was typically a project version that was downloaded
locally. First, specific JAR metadata were calculated and stored
(see Section III). Then, FindBugs was invoked by the worker
and its results were also stored in the data repository. Note
that before invoking FindBugs, the worker checked if the JAR
is valid in terms of implementation. For instance, for every

SNote that in the Maven repository, versions are actual releases.
Shttp://findbugs.sourceforge.net/

7http://www.rabbitmq.com/

8http://www.mongodb.org/
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Fig. 1. The data processing architecture.

TABLE III
BUG DESCRIPTION.

type EI_EXPOSE_REP2

category MALICIOUS_CODE

source File ANTLRHashString. java
class antlr.ANTLRHashString
method setBuffer

sourceline start 97

sourceline end 98

JAR the worker checked if there were any .class files before
invoking FindBugs.

When the data collection was completed, we ran some tests
to check the validity of the results. A common issue that we
discovered was the out-of-memory crashes of FindBugs, which
demanded the repetition of the process for the corresponding
JARs, with the appropriate settings in the Java Runtime Envi-
ronment (JRE).

III. DATASET ENTRIES

FindBugs reports bug collections that include all the bugs
discovered in a JAR file. For every registered bug, there are
numerous accompanying features like the class, the method
and the line that the bug was found (see Table IIT). FindBugs’
results also include additional information like the number of
classes included in the examined JAR and others.

As we mentioned earlier, our data were stored in a
MongoDB database that stores its records in JSON-like docu-
ments. However, FindBugs outputs its results in XML format.
Hence, all the data were converted to the JSON format by
mapping all XML elements to JSON objects.

As we discussed in Section II, our workers calculated
and stored specific metadata together with the FindBugs’
results. Such metadata included the JAR’s size (in terms of
bytecode), its dependencies, and the ordinal version number
of the version. This number was derived from an XML file
that accompanies every project in the Maven repository called
maven-metadata.xml. The following listing shows the format
of the metadata each worker collected. Note that the results of
FindBugs are too large to fit, thus in order to see a complete
instance please visit our GitHub repository (see Section VII):
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{"JarMetadata": {

}

"BugCollection":

"version": "1.0.0",
"version_order": "1",
"jar_size": "34768",
"dependencies": [
{
"version" "2.0",
"groupId" "org.apache.maven",
"artifactId" "maven-project"

}l

{ /+ other dependencies =/ }
1,
"group_1id": "org.apache.myfaces.buildtools",
"jar_filename": "myfaces-jdev-plugin-1.0.0.jar",
"artifact_id": "myfaces-jdev-plugin",
}I
{ /* FindBugs data =/ }

Basic k-means clusters of all the versions that exist in the ecosystem.

TABLE IV
CORRELATIONS BETWEEN VERSION AND SOFTWARE BUGS COUNT.

Category Spearman Correlation — p-value
Security 0.04 < 0.05
Malicious Code 0.03 < 0.05
Style 0.03 < 0.05
Correctness 0.04 < 0.05
Bad Practice 0.03 < 0.05
MT Correctness 0.09 < 0.05
i18n 0.06 < 0.05
Performance (0.01) 0.07

Experimental 0.09 < 0.05

IV. GATHERING EXPERIENCE RETURNS FOR SECURITY
BASED ON OUR DATASET

Since MongoDB provides a rich query interface, it was
easy to find out how software bugs are distributed among
the repository (see Figure 2) or identify the main clusters
that are formed based on the number of the bugs of every
version (see Figure 3). An interesting observation is that the
Malicious Code bugs, together with the Bad Practice bugs
are the most popular in the repository. Also, a simple query
like the following, will reveal that from the total number of
versions, 45,559 of them contained at least one bug coming
from the Malicious Code category:
db. findbugs. find ({

"BugCollection.BugInstance.category’
"MALICIOUS_CODE' }) .count ()

Another observation involves specific bugs thath we could
consider as critical and they are a subset of the Security
category. Such bugs are related to vulnerabilities that appear
due to the lack of user-input validation and can lead to dam-
aging attacks like SQL injection and Cross-Site Scripting [10].
Also, as FindBugs’ bug descriptions indicate,” if an application
has bugs coming from this category, it might have more
vulnerabilities that FindBugs doesn’t report. Table V presents
the number of versions where at least one of these bugs exists.
In essence, 5,341 project versions, contained at least one bug
related to user-input validation issues. Given the fact that other
projects include these versions as their dependencies, they
are automatically rendered vulnerable if they use the code
fragments that include the security bugs.

Furthermore, we have created a series of scripts to exhibit
how the dataset can be used to capture correlations regarding
the evolution of security bugs. First, based on the dataset we
produced some metadata that contained the number of bugs per
category in each project version. Based on these metadata we
estimated the relation between bugs and time (see Table IV).
Specifically, we calculated the Spearman correlations between
the defects count and the ordinal version number across all
projects. The zero tendency that can be seen on Table IV
applies to all versions of all projects together.

http://findbugs.sourceforge.net/bugDescriptions.html



TABLE V
NUMBER OF PROJECT VERSIONS THAT CONTAIN AT LEAST ONE SECURITY BUG RELATED TO USER-INPUT VALIDATION ISSUES.

Bug Description

Number of Project Versions

HRS: HTTP cookie formed from untrusted input 151
HRS: HTTP response splitting vulnerability 1,579
SQL: non-constant string passed to execute method on an SQL statement 1,875
SQL: a prepared statement is generated from a non-constant String 1,486
XSS: ISP reflected cross site scripting vulnerability 18
XSS: Servlet reflected cross site scripting vulnerability in error page 90
XSS: Servlet reflected cross site scripting vulnerability 142
TABLE VI
o* e (\?f’(’ e @
CORRELATIONS BETWEEN JAR SIZE AND SOFTWARE BUGS COUNT. PR S 8 @ o P
e \J\a\“c\ o ?)aéq NN <@ ?95\0( o o

Category Spearman Correlation  p-value
Security 0.19 < 0.05
Malicious Code 0.65 < 0.05
Style 0.68 < 0.05
Correctness 0.51 < 0.05
Bad Practice 0.67 < 0.05
MT Correctness 0.51 < 0.05
i18n 0.53 < 0.05
Performance 0.63 < 0.05
Experimental 0.36 < 0.05

The situation was different in individual projects where we
performed Spearman correlations between security bug counts
and version ordinals in all projects we examined. These paint
a different picture from the above table, shown in Figure 4.
The spike in point zero is explained by the large number
of projects for which no correlation could be established—
note that the scale is logarithmic. Still, we can see that there
were projects where a correlation could be established, either
positive or negative. Such results indicate that we cannot say
if vulnerabilities decrease or increase as projects mature.

In addition, we explored the relation between security bugs
with the size of a project version, measured by the size of
its JAR file by carrying out correlation tests between the size
and the security bug counts for each project and version. The
results can be seen in Table VI. An interesting observation is
that the Security category stands out by having a remarkably
lower effect than the other categories. As we mentioned earlier,
many bugs that belong to this category are related to user-input
validation issues. Hence, it seems that even if a programmer
adds code to a new version, if this code does not require user
input, the possibility of such bug is minimal.

Figure 5 presents the pairwise correlations between all bug
categories. To establish these correlations, we calculated the
correlations between the number of distinct bugs that appeared
in a project throughout its lifetime. Our results show that bugs
coming from the Security category are not correlated with the
bugs coming from other categories. This indicates that security
bugs of this kind do not appear together with the other bugs.!”

10Fyrther research concerning the examination of security bugs based on
this dataset can be found in our previous paper [11].

Security |-

s OO00O0OO00 |
O/ 0000886
O #9896
OO0 09980 |
O 09060
X X4
or4

Malicious Code |-
Style

Bad Practice -
Correctness -

MT Correctness -

o0 0060
peornance go00 /90 |
w OO OO0 /I
OCOOOOOOI /

Experimental

Fig. 5. Correlation matrix plot for bug categories. Blue color indicates positive
correlation. The darker the color (and the more acute the ellipsis slant), the
stronger the correlation.

V. THREATS TO VALIDITY

During our dataset analysis we faced some limitations that
concerned the non-availability of some JARs. Specifically,
there were some JARs included in the initial JAR list, that were
not available online, when the FindBugs result collection was
performed.

A threat to the internal validity of our dataset construction
process could be the false alarms of the FindBugs tool [8],
[12], [13]. Specifically, reported security bugs may not be
applicable to an application’s typical use context. For instance,
FindBugs could report an SQL injection vulnerability in an
application that receives no external input. In this particular
context, this would be a false positive alarm. False alarms of
static analysis tools and how they can be reduced are issues
that have already been discussed in literature [9], [14] and they
are beyond the scope of this paper.

VI. RELATED WORK

Our work is related to the creation of datasets to facilitate
research and the examination of software vulnerabilities.

The Maven ecosystem has been previously analyzed by
Raemaekers et al. [15] to produce the Maven dependency
dataset. Apart from basic information like individual methods,
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classes, packages and lines of code for every JAR, this dataset
also includes a database with all the connections between the
aforementioned elements. Our work differs from this research
because it reports all bugs coming from the output of a static
analysis tool, for each JAR contained in the Maven repository.

Identyfying software bugs in multiple projects is not a new
idea [16]. On the security front, Ozment and Schechter [17]
examined the code base of the OpenBSD operating system
to determine whether its security is increasing over time.
Massacci et al. [18] observed the evolution of software defects
by examining six major versions of Firefox. In addition,
Shahzad et al. [1] analysed large sets of vulnerability data-
sets to observe various features of the vulnerabilities that they
considered critical, while Edwards et al. [19] have examined
the evolution of security bugs by examining different versions
of four projects.

VII. CONCLUSIONS

In this paper, we have presented a dataset that includes
all the software bugs that each JAR of the Maven central
repository contains along with some other metadata mentioned
in Section IV. We have also shown how our data can be used
to extract results concerning the evolution and the behaviour
of security bugs.

Initially, we made some observations concerning the secu-
rity bugs of the Maven repository as a whole. Then, based
on our dataset, we found that we cannot say with confidence
if security bugs increase or decrease as projects mature. We
also showed that there were many projects where security
bug counts do not change as projects evolve. Concerning the
relation between severe security bugs and a project’s size
we showed that they are not proportionally related. Given
that, we could say that it is productive to search for and fix
security bugs even if a project grows bigger. In addition, the
pairwise correlations between all categories indicates that even
though all the other categories are related, severe bugs do not
appear together with the other bugs. Such findings indicate
that projects have their own idiosyncrasies regarding security
bugs and could help us answer questions like: what are the

10° Malicious Code (2780, no correlation: 2418)
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common characteristics of the projects where security bugs
increase over time? Finally, the analysis of a vulnerability
management dataset like the NvD'! (National Vulnerability
Database), to identify disclosed vulnerabilities and check if
there is a correlation between them and our dataset, could
provide interesting results.

By selecting a large ecosystem that includes applications
written only in Java, we excluded by default measurements
that involve vulnerabilities like the infamous buffer overflow
vulnerabilities [20]. Still, by examining software artifacts with
similar characteristics facilitates the formation of an experi-
ment. Thus, future work on our approach could also involve
the observation of other ecosystems like the ones mentioned in
Section I and projects in different languages like Ruby, Python
etc. Concluding, the complete set of our data and source code
will become available upon publication.
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