
Securing Legacy Code with the TRACER Platform

Kostantinos Stroggylos* Dimitris Mitropoulos* Zacharias Tzermias†

Panagiotis Papadopoulos† Fotios Rafailidis‡ Diomidis Spinellis* Sotiris Ioannidis†

Panagiotis Katsaros‡

*Department of Management Science and Technology †Institute of Computer Science
*Athens University of Economics and Business †Foundation for Research and Technology - Hellas

{circular,dimitro,dds}@aueb.gr {tzermias, panpap, sotiris}@ics.forth.gr
‡Department of Informatics

‡Aristotle University of Thessaloniki
katsaros@csd.auth.gr, frafaili@yahoo.gr

ABSTRACT
Software vulnerabilities can severely affect an organization’s
infrastructure and cause significant financial damage to it. A
number of tools and techniques are available for performing
vulnerability detection in software written in various pro-
gramming platforms, in a pursuit to mitigate such defects.
However, since the requirements for running such tools and
the formats in which they store and present their results vary
wildly, it is difficult to utilize many of them in the scope of
a project. By simplifying the process of running a variety of
vulnerability detectors and collecting their results in an ef-
ficient, automated manner during development, the task of
tracking security defects throughout the evolution history
of software projects is bolstered. In this paper we present
tracer, a software framework and platform to support the
development of more secure applications by constantly mon-
itoring software projects for vulnerabilities. The platform
allows the easy integration of existing tools that statically
detect software vulnerabilities and promotes their use during
software development and maintenance. To demonstrate the
efficiency and usability of the platform, we integrated two
popular static analysis tools, FindBugs and Frama-c as sam-
ple implementations, and report on preliminary results from
their use.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; D.2.4 [Software Engineering]:
Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging

Keywords
Static Analysis, Software Security, Trusted Applications,
Legacy software.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author. Copyright is held by the owner/author(s).
PCI ’14 , Oct 02-04 2014, Athens, Greece
ACM 978-1-4503-2897-5/14/10
http://dx.doi.org/10.1145/2645791.2645796

1. INTRODUCTION AND MOTIVATION
A security vulnerability is a programming error that in-

troduces a potentially exploitable weakness into a computer
system [1]. Such defects can severely affect an organiza-
tion’s infrastructure [2], and may cause significant financial
damage to an organization [3]. Whereas a software bug can
cause a software artifact to fail, a security bug can allow a
malicious user to alter the execution of the entire applica-
tion for his or her own gain. Such defects could give rise to a
wide range of security and privacy issues, icluding access to
sensitive information, destruction or modification of data,
and denial of service. Moreover, security issue disclosures
can create negative publicity and decrease the market value
of a software vendor.

Software vulnerabilities may or may not depend on the
programming language used to develop an application. The
former set involves the infamous buffer overflow attacks.Such
defects are possible due to the lack of memory-safety mecha-
nisms in some programming languages (most notably c and
c++), and do not appear in all kinds of applications. The
latter set involves attacks that can be performed against nu-
merous applications regardless of the programming language
used, and by utilizing different attack techniques [4].

One of the most common approaches to identify software
vulnerabilities is static analysis [5]. This kind of analysis
is performed by automated tools either on the program’s
source or object code and without actually executing it [6].
Usually, such analysis takes place by security auditors at
the end of, or during the development of the program. Since
the requirements for running such tools and the formats in
which they store and present their results vary wildly, it is
inherently difficult to utilize a number of them effectively on
a software project.

In this paper we present tracer, a framework and soft-
ware platform to support the ongoing maintenance and se-
cure development of applications. tracer simplifies this
process by providing a platform to run such tools in an au-
tomated manner. Moreover, by using a common represen-
tation for metrics and results regardless of the tool that was
used to generate them, it enables their analysis, presentation
and visualization in a homogenous way.

tracer monitors multiple data sources associated with
the develoment of a software project, such as the source
code repository and bug management tracking system, and
automatically analyzes each revision. Therefore it can be

used to track security defects throughout the evolution [7,
8] of a project. Such observations can set the basis for
discussing issues that may improve vulnerability discovery
models [9] and identify recurring patterns of vulnerabilities
among projects [10]. In this way we can improve the secu-
rity and reliability of a system, which are two of the main
pillars of a trusted application.

2. RELATED WORK
There are numerous efforts that employ different tools and

methodologies, in order to help programmers secure their ap-
plications or provide the research community with results re-
garding the evolution of security bugs. tracer differs from
most of the existing plain bug detection frameworks, since
its scope includes an open, automated way to distinguish
security bugs and their frequency of occurrence during the
software development process. In this manner, our platform
helps programmers to better understand which defects are
most common in their software and as a result to improve
their development skills and build more trusted applications.

2.1 Software Quality
There are some frameworks that are similar to tracer,

but they focus more on software quality rather than soft-
ware security. For instance, the flossmetrics project [11]
(Free/Libre Open Source Software Metrics) aims to con-
struct, publish and analyse a large scale database with infor-
mation and metrics about libre software development com-
ing from several thousands of software projects, using exist-
ing methodologies, and tools already developed. To achieve
this the project integrates already available tools to extract
and process results about identification of best practices,
productivity measurement and others.

Hipikat [12], is an Eclipse plug-in that collects data from
repositories, task reports, mailing lists and bug databases to
suggest project related software development artifacts (e.g.
similar changes, related email discussions, relevant project
Web pages) that a developer could consider during impor-
tant architecture decisions. Hipikat though, is a purpose
specific system that was designed to be an automated store
of project memory. In contrast, tracer offers more generic
abstractions of the underlying data sources and defers pro-
cessing to external tools (plug-ins).

Hackystat [13] is an open source framework for collec-
tion, analysis, visualization, interpretation, annotation, and
dissemination of software development process and product
data. In particular, it uses telemetry data in order to im-
prove software development management. Hackystat users
are able to attach software “sensors” to their development
tools, which unobtrusively collect and send“raw”data about
development to a web service. tracer is similar to Hack-
ystat since it can also process data from both the software
project and the development process. Moreover, tracer
is more flexible than Hackystat as it does not require any
changes to the project’s configuration or the developer’s
toolset.

SonarQube (formerly Sonar) [14] is an open source web
platform that provides code quality measurements, reviews
and remediations. It uses various tools (including Find-
bugs) to measure code for bugs and possible violation of
code style policies. SonarQube supports more than 20 dif-
ferent languages, including Java, c# and others, and allows
users to add their own rules on those languages. Finally, like

tracer, it is extendable through a library of plug-ins.

2.2 Software Security
Hakiri1 is a cloud security platform that examines GitHub

repository branches in order to measure the occurrence of
security vulnerabilities in Ruby on Rails projects. Such vul-
nerabilities include sql injection [4] and others.

The Parfait [15] [16] framework developed by Sun Labs,
is a bug detection framework for c and c++ code, designed
for scalability and precision [17]. It is built on top of the
llvm framework [18], a low-level virtual machine for var-
ious languages. It also uses BegBunch [19], a bug bench-
marking suite that contains existing synthetic benchmarks.
Parfait is able to classify the bug types in real bugs, no
bugs and potential bugs. Parfait also aims to identify secu-
rity vulnerabilities using taint analysis during an additional
pre-processing step. They also evaluate their approach on a
subset of the samate2 benchmarks related to buffer overflow
anomalies.

The commercial Klockwork suite3 provides code refactor-
ing, reporting and metrics, source code analysis, and code
review for c, c++, Java and c# programs. It builds a
data repository that has several different uses such as met-
rics generation, enforcement of architectural constraints and
on-the-fly detection of potential faults and security issues.

3. FRAMEWORK DESIGN
tracer is a platform aimed at identifying security vul-

nerabilities in software systems. Instead of designing and
implementing yet another such platform from the ground
up, we selected to build tracer on top of the open source
Alitheia Core platform. A high-level representation of the
tracer platform can be seen in Figure 1.

3.1 The Alitheia Core platform
Alitheia Core [20] is a platform designed for facilitating

large scale quantitative software engineering studies. It em-
ploys an extensible, service-oriented architecture to prepro-
cess software repository data (both source code and develop-
ment process artifacts, such as emails and bug reports) into
an intermediate format that allows researchers to develop
custom analysis tools. It is based on a three-tier architec-
ture that automatically distributes the processing load on
multiple processors or cluster computing nodes, while en-
abling both programmatic and rest api based access to the
raw data, the metadata, and the analysis results. The pro-
cessing core is modeled on a system bus architecture based
on osgi4, with services that are attached to the bus and are
accessed via a service interface. Extensibility is available
through plug-ins for data analysis and raw data access sup-
port. A wealth of services, notably a metadata schema and
automated tool invocation, is offered to analysis tool writers
by the platform.

To analyse a project, Alitheia Core processes a local mir-
ror of the project’s source code repository, mailing list archive
and bug tracking database. The analysis itself is split in pre-
defined phases (e.g. data extraction, data inference, met-
ric extraction etc), during which a set of pre-defined data

1https://hakiri.io
2http://samate.nist.gov
3http://www.klocwork.com/products/insight/
4http://www.osgi.org/

Plug-in

TRACER Platform

Plug-ins can be used either
to embed existing tools or

custom metrics.

Results
Project

Repository

Analysis can be
run on all project

revisions.

Results in
homogenous format

regardless of the tools
that generate them.

REST API
Allows queries on

results, integration with
third-party platforms and

client applications.

Figure 1: tracer high level architecture.

extraction and analysis plug-ins are automatically applied.
During this phase project metadata is collected and stored in
the system’s database using an internal representation that
is used throughout the system. This information can be
used to promptly respond to queries relating to the proper-
ties of the resources examined by the various plug-ins, while
the original format of all resources are still available in the
raw data stores. At the end of the process, the researcher
can either query the results database directly or browse the
results using a simple web based interface. This data is also
exposed via a rest interface that can be used to perform
similar queries.

Since the platform operates in an osgi container environ-
ment, each plug-in is a self-contained osgi bundle. This way
plug-ins can define dependencies on the services provided
by each one and can share dependencies to third party li-
braries, in order to minimize code duplication and promote
code reuse.

Alitheia Core metric plug-ins implement a common inter-
face - in fact all metric plug-ins inherit from an abstract
implementation and only need to provide implementations
of a minimal number of methods. Each plug-in is associated
with a set of activation types, which indicate that the plug-
in must be activated in response to a change to a project
resource. It also can calculate several different metrics, each
associated to the scope of its applicability, i.e. a scope that
defines the types of project resources it can be calculated
against. Metric plug-ins can access the services provided
by the Alitheia Core components to retrieve raw data, or
results from other plug-ins required for their own operation.

3.2 The TRACER platform design and imple-
mentation

While Alitheia Core aims to allow for efficient estimation
of the quality of software projects in general, tracer was
designed with a focus on software security. Its primary ob-
jective is to provide a platform for continuously monitoring
the development of software projects, in order to support
the timely identification of security vulnerabilities. Since a
significant part of the infrastructure required for supporting
this operation was already implemented in Alitheia Core,
tracer was designed to leverage the already existing func-
tionality it provided. To support the specific objectives of
tracer, a set of new components providing extensions to
existing ones was added at each level of the Alitheia Core

architecture.
The integration of third party tools for static analysis or

other techniques of vulnerability detection is implemented
by building on top of the plug-in infrastructure offered by
the Alitheia Core platform. One of the major advantages of
the framework is the independence from the programming
language used to develop the analyzed projects. Projects
that are implemented on diverse programming languages
can be tested for software bugs and vulnerabilities, provided
that analysis tools for the respective languages have been
incorporated into the platform. The platform is also inde-
pendent of the programming languages used to develop the
third party tools that detect software vulnerabilities.

3.2.1 Data model for software vulnerability repre-
sentation

All tracer functionality is based upon a model for rep-
resenting and persisting information about software vulner-
abilities. A scheme based on roles and privileges is used
to allow the detection of vulnerabilities on specific software
artifacts, or specific vulnerability reporting in a multi-user
and multi-project environment. The following are the core
entities used for representing software vulnerabilities:

Vulnerability Type A vulnerability type describes the cat-
egory in which a detected software vulnerability can be
classified

Security Profile A security profile is a logical grouping
of vulnerability types, enabling the end user of the
platform to perform a detection of specific types of
vulnerabilities

Vulnerability A vulnerability represents a specific soft-
ware security vulnerability of a given type, detected
on a given software project version and / or artifact
(e.g. file, module, method).

This scheme is simple enough to support the easy devel-
opment of vulnerability detectors. At the same time, when
combined with the data model provided by Alitheia Core for
storing metrics, it can cater for complex scenarios, reporting
at various levels of granularity and detailed analyses.

3.2.2 Support for software vulnerability detection
There are a number of software vulnerability detection

techniques and tools available, as presented in Section 2.
Reimplementing them as part of the tracer platform would
be an exercise in futility, since each one has different oper-
ating requirements and makes different assumptions. More-
over, by simplifying the integration of third party tools for
vulnerability detection, a higher level of expandability of the
platform can be achieved.

In most cases, the detection of vulnerabilities on a software
artifact involves only two steps: invoking an external tool
created for this purpose with specific arguments as required,
and evaluating the results returned by the tool. Typically
these operations can be further simplified by writing custom
tools or scripts to handle the tedious parts of the process.
Therefore, the integration of such external tools in tracer
can be supported by implementing simple driver plug-ins
that only need to implement these two steps and store the
results using the data model provided by the platform.

Such an external tool driver is called a vulnerability detec-
tor plug-in, and it leverages the plug-in mechanism provided

TRACER

Alitheia Core

OSGi

REST API

DB
Service

Logging Job
Scheduler ActivatorCluster

Service

Plug-in
Admin

SubVersion Bugzilla
XMLMailDirGit

Analysis
Plug-inAnalysis

Plug-inAnalysis
Plug-in

Admin
Interface

Data
Plug-inData

Plug-inData
Plug-inData Accessor Service

Metadat
a Plug-inMetadat

a Plug-inMetadata
Plug-in

Metadata
Updater

Web User
Interface

REST API

Platform
Service

Vulnerability
DetectorsVulnerability

DetectorsVulnerability
Detector

Vulnerability Model Extensions

User Privilege Model Extensions

Results & Metadata Database

User
Privilege
Service

Figure 2: tracer extensions on the Alitheia Core architecture.

by Alitheia Core to handle automatic activation, as well as
storage and retrieval of results. Each vulnerability detector
is associated with a set of vulnerability types that it can
detect, so that the platform may automatically trigger its
execution when needing to check if a software project or ar-
tifact is vulnerable to a specific type of attacks. Moreover,
each vulnerability detector is associated to the types of dif-
ferent software artifacts or programming constructs that it
can analyze, so that it may be triggered when a new artifact
is submitted to the system for evaluation.

The vulnerability detector plug-ins also implement the
metric plug-in interface with each supported vulnerability
type corresponding to one metric. This allows them to be
transparently supported by existing tools built on top of
Alitheia Core, so that aggregate and detailed statistics on
the number of specific types of vulnerabilities can be calcu-
lated and reported for each software project or artifact.

An osgi archetype for creating vulnerability detector plug-
ins that are preconfigured to use the existing infrastructure
is provided to simplify the integration of external tools for
static analysis. By deriving from provided abstract classes
that handle most of the tedious details, only a minimal num-
ber of methods need to be implemented in order to add sup-
port for a third party tool to the platform. Plug-ins for two
third party tools have already been implemented using this
archetype (see Section 4). However developers may choose
to create their own plug-ins that implement the required in-
terfaces from scratch and manage the communication with
the other components of the platform themselves.

3.2.3 Support for client applications
Extending the tracer platform is not achievable solely

by creating plug-ins. A major role for effectively utilizing
the functionality available is played by the client-side appli-
cations provided. In order to facilitate the development of
client applications, a restful service is implemented, pro-
viding a rest api for manipulating the platform by exter-
nal entities and applications. This api allows access to the
vulnerabilities data model and contains methods for manip-
ulating entities such as security profiles. It also supports
performing tasks such as triggering the analysis of a project
and the retrieval of analysis results.

To demonstrate the usability of the api, the front-end of
the platform has been implemented as a modern web ap-
plication developed with AngularJS,5 which uses the api to
communicate with the platform. At the same time, since
rest apis are universal and not dependent on implementa-
tion, this allows the easy integration of the tracer platform
with other applications and systems.

4. TOOLS INTEGRATION
To evaluate our platform, we have created plug-ins to inte-

grate two different tools for vulnerability detection, namely:
FindBugs [21], and Frama-c [22]. The former analyzes ap-
plications written in Java, while the latter examines applica-
tions written in c. This highlights the fact that our platform
is independent of the programming language used to develop
a project being analyzed.

4.1 FindBugs
FindBugs6 [21] is an open source static analysis tool that

has been used many times for both commercial and research
needs [23]. It searches for software bugs by examining the
compiled Java virtual machine bytecode of an application.

To integrate Findbugs in the tracer platform, we cre-
ated a plug-in using the provided archetype. Since Find-
Bugs runs on bytecode, our plug-in also builds the project
before running FindBugs. Building a software project is a
multistep process that involves discovering and downloading
the project dependencies, invoking the project’s build script
and retrieving the build artifacts. To automate some of these
tasks, modern build systems such as Maven7 have been im-
plemented. Such tools typically follow a standard directory
structure for code and build artifacts. The Findbugs plug-
in exploits the conventions used by Maven to automatically
build each project and retrieve both the generated bytecode
archives and the package structure. After the build com-
pletes, the Findbugs binary is invoked with appropriate ar-
guments, so as to examine the bytecode that is created by
the sources that belong to the specified project and not by

5http://angularjs.org/
6http://findbugs.sourceforge.net/
7http://maven.apache.org/

 0

 2

 4

 6

 8

 10

 12

 50 100 150 200 250 300 350

N
u
m

b
e
r

o
f
s
e
c
u
ri
ty

 i
s
s
u
e
s
 (

to
ta

l)

Revision

swizzle

(a) swizzle

 3

 3.2

 3.4

 3.6

 3.8

 4

 110 120 130 140 150 160 170 180 190 200

N
u
m

b
e
r

o
f
s
e
c
u
ri
ty

 i
s
s
u
e
s
 (

to
ta

l)

Revision

hydra-cache

(b) hydra-cache

Figure 3: Security bug frequency for two Java
projects.

its dependencies. The report that contains all the detected
bug descriptions is generated in xml format. This report
can be easily parsed in order to collect the bugs that we
are interested in. The bugs are then associated with file re-
vision information stored in the tracer database through
path name matching.

We have examined two open source projects that use the
Maven build system, namely swizzle8 and hydra-cache.9 Fig-
ure 3 depicts the evolution of security bugs of both measure-
ments for each project. Note that both of the projects deal
with untrusted input, therefore they could become targets
for exploits. The most interesting observation that we can
make is that the security bugs are increasing as projects
evolve, contrary to what one would hope.

4.2 Frama-C
Frama-c10 [22] provides source code analysis in c pro-

grams. It implements a plug-in architecture over a kernel
that controls the whole analysis. Custom plug-ins and user-
defined properties written in a behavioural specification lan-
guage extend the tool’s functionality.

The stac [24] analysis tool is a Frama-c plug-in that pro-
vides an approach for characterizing the execution paths
which may lead to exploitable vulnerabilities. This is achieved
by applying a sound taint analysis with a taint dependency
sequence calculus, that makes the sequences of control and
data dependencies which must be met in order for a variable

8http://swizzle.codehaus.org/
9http://hydra-cache.codehaus.org/

10http://frama-c.com/

Project Vulnerability Untainted
Clearsilver-0.10.5 Format string 4

Double free 4
User kernel trust error 4
sql injection attack 4
Cross-site-scripting 4

mcrypt-2.6.8 Format string 4
Double free 4
User kernel trust error 4
sql injection attack 4
Cross-site-scripting 4

Table 1: Occurrences of security bugs in the projects
examined by Frama-c.

to become tainted explicit. We have defined five configura-
tions based on stac in order to detect defects like format
string vulnerabilitiesand sql injection vulnerabilities [4].

The process of integrating Frama-c with the stac plug-
in within the tracer platform was similar to that used
for Findbugs. After integrating the tool, we applied it on
two commercial projects: Clearsilver-0.10.5,11 and mcrypt-
2.6.8.12 The results for both projects are described in Ta-
ble 1.

5. CONCLUSIONS AND FUTURE WORK
Software vulnerabilities are an ongoing security concern

due to the continued use of unsafe programming languages,
bad development practices and insufficient or ineffective test-
ing. In this paper we present tracer, a software platform
to support the development of more secure applications by
constantly monitoring software projects for vulnerabilities
during development and maintenance. The platform allows
the easy integration of third party tools that detect soft-
ware vulnerabilities as plug-ins and handles their activation
in an efficient, automated manner. By simplifying the pro-
cess of running a variety of such tools and collecting their re-
sults in an automated manner during development tracer
can be also used to track security defects throughout the
evolution history of software projects. Finally, it provides
programmatic interfaces for performing queries on the anal-
ysis results, metrics, and metadata in a homogenous way,
regardless of the tools that were used to generate them.

Even though we used two static analysis tool in our proof
of concept, the key idea behind our framework is to combine
more tools in order to have more substantial results. Cur-
rently, there are numerous tools that analyze code to detect
software defects that could be integrated in tracer [2]. In
addition, using FindBugs raises restrictions in the automa-
tion of the process since FindBugs runs on bytecode. Hence
our projects should be based on a build system that allows
automated builds and keep a standard directory structure
for code and build artifacts. Using static tools that examine
source code should allow us to run our framework on more
projects and enrich our results. In this manner, we could
validate the statistical significance of our results and draw
even more conclusions like: finding overlapping vulnerable
dependencies, if there is a correlation between the lines of
code and the security bugs of a project and others.

11http://www.clearsilver.net/downloads/
12http://sourceforge.net/projects/mcrypt

Acknowledgments
The project is being co-financed by the European Regional
Development Fund (erdf) and national funds and is a part
of the Operational Programme“Competitiveness & Entrepreneur-
ship” (opce ii), Measure “cooperation” (Action i).

This research has been co-financed by the European Union
(European Social Fund—esf) and Greek national funds through
the Operational Program“Education and Lifelong Learning”
of the National Strategic Reference Framework (nsrf)—
Research Funding Program: Thalis—Athens University of
Economics and Business—Software Engineering Research Plat-
form.

6. REFERENCES
[1] McGraw, G.: Software Security: Building Security In.

Addison-Wesley Professional (2006)

[2] Shahriar, H., Zulkernine, M.: Mitigating program
security vulnerabilities: Approaches and challenges.
ACM Comput. Surv. 44(3) (June 2012) 11:1–11:46

[3] Telang, R., Wattal, S.: Impact of software
vulnerability announcements on the market value of
software vendors - an empirical investigation. In:
Workshop on the Economics of Information Security.
(2007) 677427

[4] Ray, D., Ligatti, J.: Defining code-injection attacks.
In: Proceedings of the 39th annual ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages. POPL ’12, New York, NY,
USA, ACM (2012) 179–190

[5] Chess, B., West, J.: Secure programming with static
analysis. Addison-Wesley Professional (2007)

[6] Okun, V., Guthrie, W.F., Gaucher, R., Black, P.E.:
Effect of static analysis tools on software security:
preliminary investigation. In: Proceedings of the 2007
ACM workshop on Quality of protection. QoP ’07,
New York, NY, USA, ACM (2007) 1–5

[7] Ozment, A., Schechter, S.E.: Milk or wine: does
software security improve with age? In: Proceedings
of the 15th conference on USENIX Security
Symposium - Volume 15. USENIX-SS’06, Berkeley,
CA, USA, USENIX Association (2006)

[8] Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry,
D.E., Turski, W.M.: Metrics and laws of software
evolution - the nineties view. In: Proceedings of the
4th International Symposium on Software Metrics.
METRICS ’97, Washington, DC, USA, IEEE
Computer Society (1997) 20–

[9] Wang, Y., Lively, W.M., Simmons, D.B.: Software
security analysis and assessment model for the
web-based applications. J. Comp. Methods in Sci. and
Eng. 9 (April 2009) 179–189

[10] Bozorgi, M., Saul, L.K., Savage, S., Voelker, G.M.:
Beyond heuristics: learning to classify vulnerabilities
and predict exploits. In: Proceedings of the 16th ACM
SIGKDD international conference on Knowledge
discovery and data mining. KDD ’10, New York, NY,
USA, ACM (2010) 105–114

[11] Herraiz, I., Izquierdo-Cortazar, D., Rivas-Hernández,
F.: Flossmetrics: Free/libre/open source software
metrics. In: Proceedings of the 2009 European
Conference on Software Maintenance and

Reengineering. CSMR ’09, Washington, DC, USA,
IEEE Computer Society (2009) 281–284

[12] Cubranic, D., Murphy, G.: Hipikat: recommending
pertinent software development artifacts. In: Software
Engineering, 2003. Proceedings. 25th International
Conference on. (May 2003) 408–418

[13] Johnson, P., Kou, H., Paulding, M., Zhang, Q.,
Kagawa, A., Yamashita, T.: Improving software
development management through software project
telemetry. Software, IEEE 22(4) (July 2005) 76–85

[14] Campell, A., Papapetrou, P. In: SonarQube in Action,
Manning Publications (October 2014)

[15] Cifuentes, C., Scholz, B.: Parfait: Designing a scalable
bug checker. In: Proceedings of the 2008 Workshop on
Static Analysis. SAW ’08, New York, NY, USA, ACM
(2008) 4–11

[16] Cifuentes, C., Keynes, N., Li, L., Scholz, B.: Program
analysis for bug detection using parfait: Invited talk.
In: Proceedings of the 2009 ACM SIGPLAN
Workshop on Partial Evaluation and Program
Manipulation. PEPM ’09, New York, NY, USA, ACM
(2009) 7–8

[17] Chatzieleftheriou, G., Katsaros, P.: Test-driving static
analysis tools in search of c code vulnerabilities. 2012
IEEE 36th Annual Computer Software and
Applications Conference Workshops 0 (2011) 96–103

[18] Lattner, C., Adve, V.: LLVM: a compilation
framework for lifelong program analysis
transformation. In: Code Generation and
Optimization, 2004. CGO 2004. International
Symposium on. (March 2004) 75–86

[19] Cifuentes, C., Hoermann, C., Keynes, N., Li, L., Long,
S., Mealy, E., Mounteney, M., Scholz, B.: Begbunch:
Benchmarking for c bug detection tools. In:
Proceedings of the 2Nd International Workshop on
Defects in Large Software Systems. DEFECTS ’09,
New York, NY, USA, ACM (2009) 16–20

[20] Gousios, G., Spinellis, D.: Alitheia core: An extensible
software quality monitoring platform. In: Proceedings
of the 31st International Conference on Software
Engineering. ICSE ’09, Washington, DC, USA, IEEE
Computer Society (2009) 579–582

[21] Hovemeyer, D., Pugh, W.: Finding bugs is easy.
SIGPLAN Not. 39 (December 2004) 92–106

[22] Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V.,
Signoles, J., Yakobowski, B.: Frama-C: A software
analysis perspective. In: Proceedings of the 10th
International Conference on Software Engineering and
Formal Methods, Berlin, Heidelberg, Springer-Verlag
(2012) 233–247

[23] Ayewah, N., Pugh, W., Morgenthaler, J.D., Penix, J.,
Zhou, Y.: Evaluating static analysis defect warnings
on production software. In: Proceedings of the 7th
ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering. PASTE
’07, New York, NY, USA, ACM (2007) 1–8

[24] Gyrard, A., Bonnet, C., Boudaoud, K.: The STAC
(Security Toolbox: Attacks & Countermeasures)
Ontology. In: 22nd International World Wide Web
Conference. , Rio de Janeiro, Brazil (May 2013)
165–166

