
The project is being co-financed by the European Regional Development Fund (ERDF)
and national funds and is a part of the Operational Programme “Competitiveness &
Entrepreneurship” (OPCE ii), Measure “COOPERATION” (Action i).

Alitheia Core Integration

TRACER: A Platform for Securing Legacy Code
Kostantinos Stroggylos*, Dimitris Mitropoulos*, Zacharias Tzermias^, Panagiotis Papadopoulos^, Fotios

Rafailidis', Sotiris Ioannidis^, Diomidis Spinellis* and Panagiotis Katsaros'
*Athens University of Economics and Business ^Institute of Computer Science 'Department of Informatics

Department of Management Science and Technology Foundation for Research and Technology - Hellas Aristotle University of Thessaloniki

TRACER is a framework to support the development of secure applications by constantly monitoring software projects for vulnerabilities.
TRACER simplifies the integration of existing tools that detect software vulnerabilities and promotes their use during development and
maintenance.

Projects Versions Vulnerabilities

FRAMA-C Integration Results

FindBugs Integration Results

Plug-in

TRACER Platform

Plug-ins can be used either to
embed existing tools or custom

metrics.

Results
Project

Repository

Analysis can be run on
all project revisions.

Results in homogenous
format regardless of the
tools that generate them.

REST API
Allows queries on results,
integration with third-party

platforms and client applications.

TRACER High Level Architecture. TRACER can examine applications written in different
programming languages and can secure them against
the various, constantly evolving threats. This is done by
either embedding existing static analysis tools or
calculating specific security metrics written by individual
developers.

Since the formats in which such tools store and present
their results varies wildly, it is inherently difficult to utilize
a number of them effectively on a software project. tracer
simplifies this process by providing a platform to run such
tools in an automated manner. Moreover, by using a
common representation for metrics and results regardless
of the tool that was used to generate them, it enables their
analysis, presentation and visualization in a
homogenous way.

To evaluate our platform, we have created plug-ins to
integrate two different tools for vulnerability detection,
namely: FindBugs, and Frama-C.

TRACER

Alitheia Core

OSGi

REST API

DB
Service

Logging Job
Scheduler ActivatorCluster

Service

Plug-in
Admin

SubVersion Bugzilla
XMLMailDirGit

Analysis Plug-in

Analysis Plug-in

Analysis
Plug-in

Admin
Interface

Data Plug-in

Data Plug-in

Data
Plug-in

Data Accessor
Service

Metadata Plug-in

Metadata Plug-in

Metadata
Plug-in

Metadata
Updater

Web User
Interface

REST API

Platform
Service

Vulnerability Detectors

Vulnerability Detectors

Vulnerability
Detector

Vulnerability Model Extensions

User Privilege Model
Extensions

User
Privilege
Service

Instead of designing and implementing TRACER from the ground up, we built it on top of the open
source Alitheia Core platform, which is designed for facilitating large scale quantitative software
engineering studies. To support the specific objectives of TRACER, a set of new components was
added at each level of the Alitheia Core architecture. These include a model for representing
software vulnerabilities, a mechanism for automatic vulnerability detection triggering, a REST API for
accessing the analysis results, and an archetype for plug-ins to integrate new vulnerability detection
tools in the platform. Like Alitheia Core, TRACER monitors multiple data sources associated with the
development of a software project, such as the source code repository and bug tracking system, and
automatically analyzes each revision. Therefore it can be used to track security defects throughout
the evolution of a project.

On the right you can see that we have integrated and run FindBugs for every revision of two open
source projects. Interestingly, security bugs are increasing as projects evolve, contrary to what one
would hope.

Project Vulnerability Untainted
Clearsilver-0.10.5 Format string 4

Double free 4
User kernel trust error 4
sql injection attack 4
Cross-site-scripting 4

mcrypt-2.6.8 Format string 4
Double free 4
User kernel trust error 4
sql injection attack 4
Cross-site-scripting 4

Table 1. Occurrences of security bugs in the projects examined by Frama-c.

5 Conclusions and Future Work

Software vulnerabilities are an ongoing security issue due to the continued use
of unsafe programming languages, bad development practices and insu�cient
or ine↵ective testing. In this paper we present tracer, a software platform to
support the development of more secure applications by constantly monitoring
software projects for vulnerabilities during development and maintenance. The
platform allows the easy integration of third party tools that detect software vul-
nerabilities as plug-ins and handles their activation in an e�cient, automated
manner. By simplifying the process of running a variety of such tools and col-
lecting their results in an automated manner during development it may be used
to track security defects throughout the evolution history of software projects.
It also provides programmatic interfaces for performing queries on the analysis
results, metrics and metadata in a homogenous way, regardless of the tools that
were used to generate them.

Even if we used two static analysis tool in our proof of concept, the key
idea behind our framework is to combine more tools in order to have more
substantial results. Currently, there are numerous tools that analyze code to
detect software defects that could be easily imported to tracer [43, 44]. For
instance, lapse+ [45] is a security scanner that uses data-flow analysis [46] to
detect input-validation issues. Another canditate is hp code advisor [47] that
performs similar analysis on c and c++ programs.

In addition, using FindBugs raises restrictions in the automation of the pro-
cess since FindBugs runs on bytecode. Hence our projects should be based on a
build system that allows automated builds and keep a standard directory struc-
ture for code and build artifacts. Using static tools that run over source code
like the aforementioned ones, should allow us to run our framework on more
projects and enrich our results. In this manner, we could validate the statistical
significance of our results and draw even more conclusions like: finding overlap-
ping vulnerable dependencies, if there is a correlation between the lines of code
and the security bugs of a project and others.

 3

 3.2

 3.4

 3.6

 3.8

 4

 110 120 130 140 150 160 170 180 190 200

N
u

m
b

e
r

o
f

se
cu

ri
ty

 is
su

e
s

(t
o

ta
l)

Revision

hydra-cache

Results & Metadata Database

 0

 2

 4

 6

 8

 10

 12

 50 100 150 200 250 300 350

N
u

m
b

e
r

o
f

se
cu

ri
ty

 is
su

e
s

(t
o

ta
l)

Revision

swizzle

