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Abstract—A security-related bug is a programming error that
introduces a potentially exploitable weakness into a computer
system. This weakness could lead to a security breach with
unfortunate consequences. Version control systems provide an
accurate historical record of the software code’s evolution. In
this paper we examine the frequency of the security-related bugs
throughout the evolution of a software project by applying the
FindBugs static analyzer on all versions of its revision history.
We have applied our approach on four projects and we have
come out with some interesting results including the fact that
the number of the security-related bugs increase as the project
evolves.

Index Terms—Alitheia Core, FindBugs, Software Defects,
Static Analysis, Software Evolution.

I. INTRODUCTION

The majority of software vulnerabilities derive from a small
number of common programming errors [1], [2]. According
to SANS (Security Leadership Essentials For Managers),' two
software bugs alone were responsible for more than one and
a half million security breaches during 2008. This is because
most programmers have been trained in terms of writing code
that implements the required functionality without considering
its many security aspects [3], [4]. One of the most common ap-
proaches to identify software vulnerabilities is static analysis.
This kind of analysis is performed by automated tools either
on the program’s source or object code and without actually
executing it [5], [6]. Usually, such analysis takes place by
security auditors at the end of, or during the development of
the program.

To manage large software projects, developers employ ver-
sion control systems (vVCs) like Subversion®> and Github®.
Such systems can provide project contributors with major
advantages like: automatic backups, sharing on multiple com-
puters, maintaining different versions and others. For every
new contribution, which is known as a commit, a VCS system
goes to a new state which is called a revision. Every revision
stored in a repository represents the state of every single file
at a specific point of time.

In this work we introduce a framework that examines how
security-related bugs evolve into a software repository, through
time. To achieve this we automatically analyze every revision

Uhttp://www.sans.org/
Zhttp://subversion.tigris.org/
3https://github.com/

of the project from its early revisions to the latest commits. Our
framework combines FindBugs,* an effective static analysis
tool that has already been used in research [7], [8], and Alitheia
Core, an extensible platform designed for performing large-
scale software quality evaluation studies [9]. To show how
the number of bugs change through time, we have applied
our framework to four different open source projects. Our
initial observations set the basis for discussing issues that may
improve vulnerability discovery models [10], [11] and identify
recurring vulnerabilities [12], [13]. In this way we can ensure
the reliability and flexibility of a system, which are the main
objectives of software evolution [14]. Finally, we highlight
security-related issues like the domino effect [15].

II. FRAMEWORK DESCRIPTION

Our framework includes a static analysis tool as a bug
detector and a platform that provided us an efficient way to
access different projects and their repositories.

A. FindBugs

FindBugs [16] is an open source static analysis tool that
searches for software bugs. It works by examining the com-
piled Java virtual machine bytecodes of the programs it checks,
using the bytecode engineering library (BCEL) [17]. It supports
plug-in bug detectors and it has an extensive mechanism for
reporting errors, both through a GUI and by textual output.
To detect a bug, FindBugs uses various formal methods. For
example, to detect null pointer bugs it utilizes control
flow and data flow analysis. It has also other detectors that
employ visitor patterns over classes and methods by using
state machines to reason about values stored in variables
or on the stack. FindBugs warnings are grouped into bug
patterns which in turn are grouped into categories such as
correctness, malicious code vulnerability and bad practice.
In our experiment we are interested only in two categories
namely: security and malicious code vulnerability.

Findbugs has been used many times either for commercial
or research needs. For instance, it was used to analyze all
available builds of JDK [18] while Google has also incorpo-
rated it into its software development process [19]. It has also
been extended to verify API calls [20] and discover bugs in
Aspect] applications [21].

“http:/findbugs.sourceforge.net/
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B. Alitheia Core

Alitheia Core [9] is a platform designed for facilitating
large scale quantitative software engineering studies. To do
80, it preprocesses software repository data (both source code
and also process artifacts, such as emails and bug reports)
into an intermediate format that allows researchers to provide
custom analysis tools. Alitheia Core automatically distributes
the processing load on multiple processors while enabling both
programmatic and REST API based access to the raw data, the
metadata, and the analysis results. Alitheia Core is extensible
through plug-ins, in both the analysis tool front and also the
raw data access from. A wealth of services, notably a metadata
schema and automated tool invocation, is offered to analysis
tool writers by the platform.

To analyse a project, Alitheia Core needs a local mirror
of the project’s source code, mailing list and bug repository.
The analysis itself is split in pre-defined phases (e.g. data
extraction, data inference, metric extraction etc), during which
Alitheia Core automatically applies a set of pre-defined data
extraction and analysis plug-ins. At the end of the process,
the researcher can either query the results database directly or
browse the results using a simple web based interface.

C. Integration

To integrate FindBugs with Alitheia Core we have created a
new Alitheia Core metric plug-in that works in the following
steps (Figure 1 depicts these steps as a UML state diagram):
for every project and every revision of this project, the
metric creates a build. Then it invokes FindBugs to examine
this build and create an analysis report. A user can select
whether to examine the project alone or the project together
with its dependencies. Finally, from this report, it retrieves

A state diagram indicating the steps taken by our framework.

the security-related bugs and updates the database. Figure 2
presents how the two components are integrated.

Building a software project is a multistep process that
involves discovering and downloading the project dependen-
cies, invoking the project’s build script and retrieving the
build artifacts. To automatate some of these tasks, modern
build systems such as Maven® include support for resolving
and downloading dependencies declared in the project’s build
file, while they also follow a standard directory structure
for code and build artifacts. The Findbugs plug-in exploits
the conventions supported by Maven to automatically build
each project and retrieve the generated bytecode archives.
For example, it knows that source code is placed into the
src/main/java directory, while build artifacts are placed
under target/. It is therefore sufficient to walk the directory
structure and find the bytecode archives (jar files) in order to
retrieve the project’s (or any sub-project’s) package structure
and compiled code, respectively.

After a build the Findbugs binary is invoked. In order to
examine the bytecode that is created by the sources that belong
to the specified project and not by its dependencies we collect
all the corresponding project packages and then we use the
-onlyAnalyze option of FindBugs to pass them as one
parameter. By using the —xm1 option the report that is made
contains all the bug descriptions in an XML format. As a result,
we can easily parse this report in order to collect the bugs that
we are interested in. The bugs are then associated with file
revision information that Alitheia Core stores in its database,
through path name matching and thus results can be stored
with respect to each file version. To speed up searches, the

Shttp://maven.apache.org/
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Findbugs plug-in also stores summaries of number of incidents
found per project version.

III. INITIAL RESULTS

We have examined four open source projects that are based
on the Maven build system namely: xlite,% sxc,” javancss,® and
grepo.’ Our experiment included two measurements. First, for
every revision, we applied FindBugs only to the bytecode of a
specified project. Then for our second measurement, we also
included the dependencies of this project. Figure III depicts
the results of both measurements for every project. We have
selected maven-based projects to automatically build every
revision of a project and examine it with FindBugs on the
spot. Some of these projects may not look interesting from a
security point of view. For instance, javancss counts lines of
code. Still, all of them deal with untrusted input, thus they
could become targets for exploits.

The most interesting observation that we can make is that
the security bugs are increasing as projects evolve. This is
particularly noteworthy and shows that bugs should be fixed in
time to decrease the effort and cost of the security audits after
the end of the development process. Another observation is the
existance of the domino effect. The usage of external libraries
introduces new bugs. As we can see in all cases the sum of
the security related bugs in the second measurement is bigger

Shttp://xircles.codehaus.org/projects/xlite
"http://xircles.codehaus.org/projects/sxc
8http://xircles.codehaus.org/projects/javancss
http://xircles.codehaus.org/projects/grepo

Alitheia Core and FindBugs integration.

or equal than the first one. A mathematical representation of
the this could be the following: If bop is the variable that
represents the sum of the security related bugs of every project
for every revision, boa the sum of the bugs that also concern
the dependencies of the project for every revision and ¢ is the
number of a project revision, the following expression stands
for every project:

(1)

z": boa > z”: bop
i=0 i=0

There are also cases where there is no security bug in the
majority of the revisions of a project but there are bugs in
the libraries that it includes i.e. in the javancss project. Still,
there is a case (the sxc project) where there are no bugs in the
libraries that the project depends on.

The Alitheia Core framework provides ways to check what
changes have been made after a commit. By taking advantage
of this feature we observe that there are situations where the
total bugs are increased after the addition of a new library.
For instance, in the 591st revision of the xlite project, the
349th revision of the grepo project and the 30th revision of the
Jjavancss project, developers have added new libraries in their
project. On the other hand, the number of bugs decreases when
developers update a library (for example in the 28th revision
of the javancss project). Thus, project libraries should always
be updated not only because of the additional functionality
that they provide, but also for security reasons. In general we
can observe how the changes made in third-party software
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can affect the evolution of a project while its developers are
unaware of that.

Another interesting issue regards the bugs themselves. Ta-
ble III, shows for the last revision of every project the security
bugs that have been found. As we can see, even after hundreds
of revisions there are trivial bugs but there are also bugs
that could be severe for the application. For instance, the last
revision of javancss includes a code fragment that creates an
SQL prepared statement from a non-constant string. If this
string is not checked properly, an SQL injection attack is
prominent.

By determining the occurance of a bug for a large number of
projects, and by examining all revisions, we could generate the
frequency of the appearance of this bug. Such an estimation
could be crucial for vulnerability discovery models.

IV. RELATED WORK

There are many approaches introduced by the research
community that are used to extract conclusions by observing
the history, or the changes of sotware repositories. Such
conclusions concern the evolution of a software project, the
identification of programming errors between revisions, the
impact of a change on the whole project, the prediction of
bugs and providing the developers with useful data.
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One of the first approaches to be introduced, involves a
system called CocR, that analyzes the whole history of the soft-
ware repository of a project in order to provide the developers
with data in an efficient way [22]. Specifically, the analysis
includes the history of every developer, the creation of a graph
of mails among developers and the usage of a backtracking
system that keeps track of the various requests for changes.
By analyzing this elements, CocR can search for specific
code fragments, introduced by the same contributor and in
a specific period of time. A similar approach called history
slicing, involves the generation of a graph that links every
line of code in a repository, with its corresponding previous
revision [23]. By utilizing this graph, a contributor can locate
specific versions that contain changes for the lines of code
of his interest and their exact details (including contributor,
filenames, and others). To help find the right person to resolve
a bug report, an approach that incorporates a machine learning
algorithm has been introduced [24]. First, this algorithm is
applied to the bug reports that appear in the repository and
when a new report arrives, the classifier that is produced by
the algorithm suggests specific developers that can resolve the
report. Furthermore, an approach that observes the API-level
refactorings through the evolution of large projects has shown
that there a is an increase of bug fixes after a refactoring [25].



Project Name  Bug Description (taken from the FindBugs website) Occurance
Jjavancss Dm: Hardcoded constant database password 2
Jjavancss EIL: May expose internal representation by returning reference to mutable object 8
Jjavancss MS: Field isn’t final and can’t be protected from malicious code 3
Jjavancss MS: Field should be moved out of an interface and made package protected 4
Jjavancss MS: Field should be package protected 14
Jjavancss MS: Field isn’t final but should be 4
Jjavancss SQL: A prepared statement is generated from a nonconstant String 1
sxc EIL: May expose internal representation by returning reference to mutable object 7
xlite MS: Field should be both final and package protected 1
xlite EI: May expose internal representation by returning reference to mutable object 8
xlite MS: Public static method may expose internal representation by returning array 1
xlite MS: Field should be package protected 1
xlite MS: Field isn’t final but should be 60
grepo EIl: May expose internal representation by returning reference to mutable object 5

TABLE 1
OCCURENCES OF SECURITY BUGS IN THE LAST REVISION OF EVERY PROJECT.

Also the time taken to fix a bug after a refactoring is smaller
than before.

Some approaches involve the detection of the variations
between revisions. In particular, Sieve [26] is an automated
tool, that is based on impact analysis [27] to test if the
changes introduced in a new revision comply to the in-
variants assumed in the previous one. Another similar tool
called PARCS (performance-aware revision control support)
uses calling context tree (CCT) [28] profiling and performance
differencing [29] to provide feedback to the project developers.
This feedback concerns how the changes after a commit affect
the performance and behavior of the whole application. In
addition, a technique called change classification, has been
introduced for predicting bugs for every revision [30]. To
detect a bug the technique builds classification models by
extracting specific features (log messages, reports and others)
from the history of the repository by facilitating another
tool called Kenyon [31]. Then, for every new contibution, it
compares the commited code to the trained model to check
for existing bugs.

Apart from bug detectors that act between revisions, there
are others based on repository mining. Menzies et al. [32] base
their approach on using techniques like data mining and static
analysis to detect bugs in large repositories. Dynamine [33] is
a tool that combines software repository mining and dynamic
analysis to discover common use patterns and code patterns
that are likely errors in Java applications. In a similar way, PR-
Miner mines common call sequences from a code snapshot
and then marks all non-common call patterns as potential
bugs [33]. A method to examine source code change history
minning is also used for bug detection [34]. This method
involves a static checker that searches for commonly fixed
bugs and at the same time it utilizes information mined directly
from the project repositories to refine its results.

Our work partially differs from the bug detection approaches
since we are not aiming to only provide this functionality. We
also want to provide an automated way to show the frequency
of security-related bugs during the software development pro-
cess and either provide valuable information to the developers

of a project or assist the project planning of a new one.

V. DISCUSSION AND FUTURE WORK

Observing the changes and history of the software devel-
opment environment has provided the research community
with many useful inductions. In this paper we provided initial
results concerning the appearance of security bugs through the
evolution of a software project. To achive this we have com-
bined two tools that have been previously used in research. Our
experiment included four maven-based open source projects.
Our preliminary observation had to do with the increase of
the bugs as the project evolves. Even if this observation
is expected, it is far from encouraging. Furthermore, if it
is confirmed in other experiments it will show that there
are major security issues that can severely affect software
evolution. Other ovservations included the existance of the
domino effect and the dependence of a software project from
its libraries. No matter how well a programmer secures a
software component it won’t matter if she is using another
library with existing vulnerabilities. In addition, programmers
should use the latest versions of the libraries that their project
depends on. Finally, measuring the occurance of a security
bug through the revisions could lead to useful input for defect
identification models.

Even if we used one static analysis tool in our approach,
the key idea behind our framework is to combine more tools
in order to have more substantial results. Currently, there are
numerous tools that analyze Java code and could be easily
imported to Alitheia Core for our purposes [35], [36].

In addition, using FindBugs raises restrictions in the au-
tomation of the process since FindBugs runs on bytecode.
Hence our projects should be based on a build system that
allows automated builds and keep a standard directory struc-
ture for code and build artifacts. Using static tools that run
over source code should allow us to run our framework on
more projects and enrich our results.

By running our framework on more projects we could
validate the statistical significance of our results and draw
even more conclusions like: finding overlapping vulnerable



dependencies, if there is a correlation between the lines of
code and the security bugs of a project and others.
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